Syllabus_Margaret_Wojcicka-Hitczenko_MATH171_Hybrid

Syllabus_Margaret_Wojcicka-Hitczenko_MATH171_Hybrid

Math 171

Calculus I

Spring 2018, section 

Instructor : Margaret Wojcicka-Hitczenko                                        

Office: B1-9E   Phone 751-8943        E-mail:  mwojcicka@ccp.edu

Office Hours: 

Contacting Instructor: You can send me an e-mail or call me. The telephone number listed has voice mail.  Please call when absent or when making an appointment.  

CANVAS and WEBASSIGN:       Although our initial communication and list of assignments will be managed through the college’s learning management system – CANVAS, the quizzes and materials to help you study will be provided to you through WEBASSIGN. 

If you experience any difficulties accessing CANVAS, please contact IT Support at 215.496.6000. You can also look for help at 215.751.8702 (Peter Margolis).    

If you experience any difficulties accessing WEBASSIGN, please call  800.955.8275                           

The Course: Functions, graphs, limits, continuity, derivatives and antiderivatives of algebraic and transcendental functions; techniques of differentiation; applications of derivatives, polynomial approximation; indeterminate forms; maxima and minima and applications; curve sketching; the definite integral; the fundamental theorem of calculus; integration by substitution. . 

Prerequisite:               Math 162 with a grade of “C” or better or Math 162 (or higher) placement.

Learning Objectives: Upon successful completion of this course, students will be able to apply course concepts to interpret and solve problems relating to the following topics:

  1. Evaluate limits of functions
  2. Differentiate algebraic and transcendental functions
  3. Solve problems involving rates of change and optimization problems
  4. Graph functions and determine features of graphs such as intervals of increase and decrease, concavity, inflection points, asymptotes, holes, etc.
  5. Find anti-derivatives of functions and evaluate definite integrals using the definition of the integral and the Fundamental Theorem of Calculus 6. Evaluate definite and indefinite integrals using substitution

Textbook:  Calculus 8th edition, James Stewart, publisher: Cengage Learning; you should buy it thorough WebAssign to have an access  to their web page. You will have two weeks grace period so if you, for whatever reason decide that you cannot stay with the class, you will get a refund for the book.

Enrollment Policy:    It is the responsibility of each to student to maintain his or her enrollment in the class. If a student wishes to register late for this course, he or she must obtain my permission before the third class and there must be a seat available.  All missed work will be expected to be completed once enrolled. Students who no longer wish to participate in the course must withdraw themselves. I will not withdraw students for poor attendance. Any student who has stopped attending or submitting required work and is still enrolled in the course at the end of the semester will receive a grade of F. Persons who are not enrolled in the course are not permitted to be in the classroom without prior permission of the instructor.

Disability Policy:       Students who believe they may need an accommodation based on the impact of a disability should contact me privately to discuss their accommodation form and specific needs as soon as possible, but preferably within the first week of class. If you need to request reasonable accommodations, but do not have an accommodation form, please contact the Center on Disability, room BG-39, at 215.751.8050.

Appropriate Classroom Behavior:

Please be on time for class. It is distracting to other students when people arrive late. Please switch off pagers and cell phones before entering the classroom. Please do not send text messages and do not use headphones during class time. Please be courteous and considerate to your other classmates and to me. Please do not eat in the classroom. Please do not talk (even about math issues) during the class, unless we are doing group work. If you have a question, please raise your hand and wait for me to recognize you. Please do not walk in and out of the classroom.  In case of an emergency, please leave quietly. If you have any personal questions (for example: ‘I was absent last time, can I get my test back’), please come and discuss it with me during a break, after a class, or during my office hours, NOT during the instruction time.Students must be familiar with and adhere to the College’s Academic Honesty Policy

Academic Integrity:  Each student is responsible for being familiar with the college’s academic integrity policies.  Cheating and plagiarizing are violations of these policies and open students to disciplinary action. Cheating is accessing unauthorized material, persons or information for purposes of meeting or completing an assignment. Plagiarism is the unattributed use of another’s work as one’s own. Students who are caught cheating or plagiarizing will receive a zero for that assignment and may be reported to the Office of the Dean of Students. Please contact me if you have any questions, confusion or concerns regarding academic honesty. 

Student Conduct:     Each student is responsible for being familiar with the Student Code of Conduct and following all college policies regarding appropriate use of college facilities and resources. Students are expected to be respectful and considerate of their fellow students and me. Side conversations should be kept to the strictest minimum.  Cell phones and other electronic devices must be set to be silent, vibrate only or turned off while in the classroom. Students may not use these devices while in the classroom. If you have a legitimate need to access such a device, please see me in advance. Unruly or disruptive behavior is never acceptable and students who persist will be required to leave the classroom.

Inclement weather:  In the event of inclement weather there are several ways of determining whether CCP is open.  You may listen for CCP's school closing number 238 (for day classes) and 2238 (for evening classes) on KYW radio at 1060 on the AM dial or check KYW's school closing web page at http://www2.kyw1060.com/schools/ or for a price you may call KYW's school closing phone number at 1-900-737-1060. 

Attendance:               Each student is required to attend every class meeting on time. Any student absent for the equivalent of two weeks may be dropped. Students are responsible for all work missed due to absence. If you are late, it is your responsibility to make sure that you are marked as present (please do that the same day you are late, immediately after the class or during a break).

Course content:        The course will cover chapter 2, 3, 4, and 5.

Tests:                         There will be 2 in-class tests. No test score will be dropped.  You are allowed to bring a piece of paper with any information on it you think might help you. Calculators will not be allowed.

Missed tests:             Missed tests can be made up only if a student has a justifiable excuse. If you know beforehand that you will have to miss an exam, please contact me, so you can take the exam in advance of the rest of the class. In case of emergencies impossible to foresee, to be ‘eligible’ for a make-up exam, please contact me as soon as possible (e-mail or voice-mail). Once I determine that you indeed have a legitimate excuse, you will be given a make-up exam during the Final Exams Week.

Homework is going to be assigned  every week.  You will be asked to submit it through Webassign. If you miss the deadline, you will not be allowed to make it up. Instead, at the end of the semester, I will add 20% to everybody's homework grade but your final homework score cannot exceed 100%. One can miss 20%  and still get a perfect score (for example if at the end one's score is  70%, I will add 20% to that score, so the final score on the homework/quiz will be 90%)

Final Exam:                Final Exam will be comprehensive and it will be given during the  Final Week.

Grading system   Tests will account for 50%, the final exam for  25%, and homework on Webbassign 25%.

Grade scale is as follows:   A= 85-100%   B=75-85%   C=65- 75%   D=55-65% 

 

Week #

 

Week of

 

Topics Covered

1

 Jan. 17

The Limit of a Function. Calculating Limits Using the Limits Laws 2.1, 2.2, 2.3

2

 Jan. 24

Continuity 2.5

3

 Jan. 31

Limits at Infinity;Horizontal Asymptotes 2.6

4

  Feb.7

The Derivative as a Function. Derivatives of Polynomials and Exponential Functions 2.7, 2.8, 3.1 

5

Feb. 14

Review for Test 1

The Product and Quotient Rules  3.2

6

  Feb. 21

Test 1

7

 Feb. 28

Derivatives of Trigonometric Functions 3.3

The Chan Rule 3.4

8

 March 14

 Implicit Differentiation 3.5

 Derivatives of logarithmic Functions 3.6

9

 March 21

 Maximum and Minimum Values 4.1

 The Mean Value Theorem 4.2

 How Derivatives Affect the Shape of a Graph 4.3

10

 March 28

Indeterminate Forms and l'Hospital's Rule 4.4

Summery of Curve Sketching 4.5

11

  April 4

Optimization Problems 4.7 

Newton's Method 4.8

Antiderivatives 4.9

12

 April 11

The Definite Integral 5.2

The Fundamental Theorem of Calculus 5.3

Review for Test 2

13

  April 18

 Test 2

14

April 25

The Substitution Rule 5.5

Review for Final  Exam

15

April 28-May4

 Final Exam

 

Course Summary:

Date Details