

 T h E R E l A T I o N A l D A T A B A S E M o D E l 6 5

note

The relational model, introduced by E. F. Codd in 1970, is based on predicate logic and set theory. Predicate
logic, used extensively in mathematics, provides a framework in which an assertion (statement of fact) can be
verified as either true or false. For example, suppose that a student with a student ID of 12345678 is named
Melissa Sanduski. This assertion can easily be demonstrated to be true or false. Set theory is a mathematical
science that deals with sets, or groups of things, and is used as the basis for data manipulation in the relational
model. For example, assume that set A contains three numbers: 16, 24, and 77. This set is represented as A(16,
24, 77). Furthermore, set B contains four numbers: 44, 77, 90, and 11, and so is represented as B(44, 77, 90,
11). Given this information, you can conclude that the intersection of A and B yields a result set with a single
number, 77. This result can be expressed as A ∩ B = 77. In other words, A and B share a common value, 77.

Based on these concepts, the relational model has three well-defined components:

1. A logical data structure represented by relations (see Sections 3.1, 3.2, and 3.5).

2. A set of integrity rules to enforce that the data are and remain consistent over time (see Sections 3.3, 3.6,
3.7, and 3.8).

3. A set of operations that defines how data are manipulated (see Section 3.4).

3.1 A Logical View of Data

In Chapter 1, Database Systems, you learned that a database stores and manages both data and metadata. You also
learned that the DBMS manages and controls access to the data and the database structure. Such an arrangement—
placing the DBMS between the application and the database—eliminates most of the file system’s inherent limitations.
The result of such flexibility, however, is a far more complex physical structure. In fact, the database structures required
by both the hierarchical and network database models often become complicated enough to diminish efficient database
design. The relational data model changed all of that by allowing the designer to focus on the logical representation of
the data and its relationships, rather than on the physical storage details. To use an automotive analogy, the relational
database uses an automatic transmission to relieve you of the need to manipulate clutch pedals and gearshifts. In short,
the relational model enables you to view data logically rather than physically.

The practical significance of taking the logical view is that it serves as a reminder of the simple file concept of data
storage. Although the use of a table, quite unlike that of a file, has the advantages of structural and data independence,
a table does resemble a file from a conceptual point of view. Because you can think of related records as being stored
in independent tables, the relational database model is much easier to understand than the hierarchical and network
models. Logical simplicity tends to yield simple and effective database design methodologies.

Because the table plays such a prominent role in the relational model, it deserves a closer look. Therefore, our discus-
sion begins by exploring the details of table structure and contents.

 3.1.1 tables and their Characteristics

The logical view of the relational database is facilitated by the creation of data relationships based on a logical construct
known as a relation. Because a relation is a mathematical construct, end users find it much easier to think of a relation
as a table. A table is perceived as a two-dimensional structure composed of rows and columns. A table is also called a
relation because the relational model’s creator, E. F. Codd, used the two terms as synonyms. You can think of a table as
a persistent representation of a logical relation—that is, a relation whose contents can be permanently saved for future
use. As far as the table’s user is concerned, a table contains a group of related entity occurrences—that is, an entity
set. For example, a STUDENT table contains a collection of entity occurrences, each representing a student. For that
reason, the terms entity set and table are often used interchangeably.

D_C7888_ch03_ptg01_hr_p062-104.4c.indd 65 10/17/11 11:32 AM

Prop
ert

y o
f C

en
ga

ge
 Le

arn
ing

6 8 C h A P T E R 3

3.2 Keys

In the relational model, keys are important because they are used to ensure that each row in a table is uniquely identifi-
able. They are also used to establish relationships among tables and to ensure the integrity of the data. A key consists
of one or more attributes that determine other attributes. For example, an invoice number identifies all of the invoice
attributes, such as the invoice date and the customer name.

One type of key, the primary key, has already been introduced. Given the structure of the STUDENT table shown in
Figure 3.1, defining and describing the primary key seem simple enough. However, because the primary key plays
such an important role in the relational environment, you will examine the primary key’s properties more carefully. In
this section, you also will become acquainted with superkeys, candidate keys, and secondary keys.

 3.2.1 Dependencies

The role of a key is based on the concept of determination. Determination is the state in which knowing the value of
one attribute makes it possible to determine the value of another. The idea of determination is not unique to the data-
base environment. You are familiar with the formula revenue – cost = profit. This is a form of determination, because
if you are given the revenue and the cost, you can determine the profit. Given profit and revenue, you can determine
the cost. Given any two values, you can determine the third. Determination in a database environment, however, is not
normally based on a formula but on the relationships among the attributes.

If you consider what the attributes of the STUDENT table in Figure 3.1 actually represent, you will see a relationship
among the attributes. If you are given a value for STU_NUM, then you can determine the value for STU_LNAME
because one and only one value of STU_LNAME is associated with any given value of STU_NUM. A specific termi-
nology and notation is used to describe relationships based on determination. The relationship is called functional
dependence, which means that the value of one or more attributes determines the value of one or more other attri-
butes. The standard notation for representing the relationship between STU_NUM and STU_LNAME is:

STU_NUM → STU_LNAME

In this functional dependency, the attribute whose value determines another is called the determinant or the key. The
attribute whose value is determined by the other attribute is called the dependent. Using this terminology, it would be
correct to say that STU_NUM is the determinant and STU_LNAME is the dependent. STU_NUM functionally deter-
mines STU_LNAME, and STU_LNAME is functionally dependent on STU_NUM. As stated earlier, functional depen-
dence can involve a determinant that comprises more than one attribute and multiple dependent attributes. Refer to
the STUDENT table for the following example:

STU_NUM → (STU_LNAME, STU_FNAME, STU_GPA)

and

(STU_FNAME, STU_LNAME, STU_INIT, STU_PHONE) → (STU_DOB, STU_HRS, STU_GPA)

Determinants made of more than one attribute require special consideration. It is possible to have a functional depen-
dency in which the determinant contains attributes that are not necessary for the relationship. Consider the following
two functional dependencies:

STU_NUM → STU_GPA

(STU_NUM, STU_LNAME) → STU_GPA

In the second functional dependency, the determinant includes STU_LNAME, but this attribute is not necessary for
the relationship. The functional dependency is valid because given a pair of values for STU_NUM and STU_LNAME,

D_C7888_ch03_ptg01_hr_p062-104.4c.indd 68 10/17/11 11:32 AM

Prop
ert

y o
f C

en
ga

ge
 Le

arn
ing

 T h E R E l A T I o N A l D A T A B A S E M o D E l 9 3

DBMSs use indexes for many different purposes. You just learned that an index can be used to retrieve data more
efficiently, but indexes can also be used by a DBMS to retrieve data ordered by a specific attribute or attributes. For
example, creating an index on a customer’s last name will allow you to retrieve the customer data alphabetically by the
customer’s last name. Also, an index key can be composed of one or more attributes. For example, in Figure 3.29,
you can create an index on VEND_CODE and PROD_CODE to retrieve all rows in the PRODUCT table ordered by
vendor, and within vendor, ordered by product.

Indexes play an important role in DBMSs for the implementation of primary keys. When you define a table’s primary
key, the DBMS automatically creates a unique index on the primary key column(s) you declared. For example, in
Figure 3.29, when you declare CUS_CODE to be the primary key of the CUSTOMER table, the DBMS automatically
creates a unique index on that attribute. In a unique index, as its name implies, the index key can have only one
pointer value (row) associated with it. (The index in Figure 3.31 is not a unique index because the PAINTER_NUM has
multiple pointer values associated with it. For example, painter number 123 points to three rows—1, 2, and 4—in the
PAINTING table.)

A table can have many indexes, but each index is associated with only one table. The index key can have multiple
attributes (a composite index). Creating an index is easy. You will learn in Chapter 7 that a simple SQL command
produces any required index.

3.9 Codd’s Relational Database Rules

In 1985, Dr. E. F. Codd published a list of 12 rules to define a relational database system.1 He published the list out
of concern that many vendors were marketing products as “relational” even though those products did not meet
minimum relational standards. Dr. Codd’s list, shown in Table 3.8, is a frame of reference for what a truly relational
database should be. Bear in mind that even the dominant database vendors do not fully support all 12 rules.

1Codd, E., “Is Your DBMS Really Relational?” and “Does Your DBMS Run by the Rules?” Computerworld, October 14 and October 21, 1985.

D_C7888_ch03_ptg01_hr_p062-104.4c.indd 93 10/17/11 11:32 AM

Prop
ert

y o
f C

en
ga

ge
 Le

arn
ing

