
EXAM II Review

CIS 205

Database Management Systems

Relational Databases

• A relational database is a collection of
tables/relations

• Each entity is stored in its own table

• Attributes of an entity become the fields or
columns in the table

• Relationships are implemented through
common columns in two or more tables

Relation

• Relation: two-dimensional table in which:

– Entries are single-valued

– Each column has a distinct name (called the
attribute name)

– All values in a column are values of the same
attribute

– Order of columns is immaterial

– Each row is distinct

– Order of rows is immaterial

Relational Tables

• Explain what is a Primary Key

• Primary key: column or collection of columns
of a table (relation) that uniquely identifies a
given row in that table

• Foreign Key: a primary key in another table.
Links to primary key item

 • Create an Entity Attribute Relationship (EAR)

Diagram

• Entity

• Attribute

• Relationship

• What is a Query?

• Query: SELECT, UPDATE, DELETE: a question
represented in a way the DBMS can recognize
and process

• Query-By-Example (QBE) MS ACCESS

– Visual approach to writing queries

– Users ask their questions using an on-screen grid

– Data appears on the screen in tabular form

• Select Query: a query that retrieves and
aggregates data satisfying the criteria entered
in the query

• Update query: a query that changes data

– Makes a specified change to all records satisfying
the criteria in the query

• Delete query: permanently deletes all records
satisfying the criteria entered in the query

Some Query Terms

• Simple Queries – Single table queries

• Criteria: conditions that data must satisfy

• Criterion: single condition that data must
satisfy

Functions

• Count

• Sum

• Avg (average)

• Max (largest value)

• Min (smallest value)

• Built-in functions

– Called aggregate functions

• Comparison Operators

– Also called a relational operator, there are six

= (equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to)

NOT (not equal to)

Boolean Operators

• Compound criteria, or compound conditions

– AND criterion: both criteria must be true for the
compound criterion to be true

– OR criterion: either criteria must be true for the
compound criterion to be true

Sorting

• Sorting: listing records in query results in an
ordered way

• Sort key: field on which records are sorted
• Major sort key

– Also called the primary sort key
– First sort field, when sorting records by more than one

field

• Minor sort key
– Also called the secondary sort key
– Second sort field, when sorting records by more than

one field

 • Explain Functional Dependency

• Functional Dependency: An association
between a primary key and attribute or set of
attributes; functional dependency exists if at
every moment in time, for one value of the
key, one and only one value of the attribute or
set of attributes exists.

• Explain difference between a relation and a
relationship

A Relation is a Table

A Relationship is an association between Tables

• Explain Data Redundancy

• Data redundancy is a data organization issue
that allows the unnecessary duplication of
data

Duplicate Data in the system

Causes integrity problems, which version of the
data is correct?

Causes performance problems, slows down the
system

• Data Dictionary – Meta Data

• A software tool for recording the definition of
data, the relationship of one category of data
to another, the attributes and keys of groups
of data, and so forth.

What is Cardinality

• Is the Relationships between data tables
explains how each table links to another.

• Explain the different types of cardinality and
the circumstances to use them

• 1 – 1 - What do you do

• 1 – M - What do you do

• M – M - What do you do

• One to One Cardinality

Most of the time you want to merge the two
tables together

Other times you may make the most frequently
used table the primary key table and the less
frequently used table the foreign key table

• Many to Many Cardinality

Create a Mapping/Translation Table, place the
primary keys of the associated entities tables
into the mapping table as foreign keys. These
become a composite key to uniquely identify a
record/instance in the relationship file

• One to Many Cardinality

Do nothing, this is what you want. Ensure that
the primary key of the one table is embedded
in the many table as a foreign key attribute

• Explain Referential Integrity

Must insert or create Primary Key item before
inserting Foreign Key items

Must delete or drop Foreign Key items before
deleting or dropping Primary Key Items

• Explain the three tier system

Client System – Web Browser

Middleware – JSP, ASP, PHP

Database Server – MySQL. Oracle, DB2, MS Server

Usually on three or more computer systems. All
three may reside on one computer system during
application development and testing.

• Explain the enterprise model and the file
system model

Enterprise – centrally managed data, one set of
data to many applications

File System – duplicate sets of data, one
application to one set of data, a problem is
incompatibility across applications and data
redundancy

• Be able to Create a Data Dictionary

Field Names

Field Descriptions

Field Data Types

Field Constraints

Identify Primary and Foreign Keys

Categorize by Table

• Be able to Translate Relational Schema into a
Stable Translation

• In this type of Translation:

All Entities Become Tables

All Relationship Become Tables

Bring Primary Keys of Entities into associated
Relationship Tables and make them foreign
keys in the Relationship Table

• Be able to Normalize a Relational Schema

Check for 1st Normal Form

 repeating groups, composite attributes,
multi-valued attributes

 Check for 2nd Normal Form

 Identify PK, All non Key Attributes are
determine by PK

Check for 3rd Normal Form – no Transitive
Dependencies A -> B ->C , A cannot -> C

Explain Projection and Selection

Projection filters columns
• Takes a vertical subset of a table
• Causes only certain columns to be included in the new

table

Selection filters rows
• Takes a horizontal subset of a table
• Retrieves certain rows from an existing table (based on

criteria) and saves them as a new table
• Includes the word WHERE followed by a condition

• Explain Union, Intersection, Difference

• Union merges two tables with identical data
types sequentially across

• Intersect identifies like items in both tables
based on attributes

• Difference identifies what is in one table but
not duplicated in another table

Normal Set Operations

• Union of tables A and B
– Table containing all rows that are in either table A or

table B or in both table A and table B

• Intersection of tables A and B
– Table containing all rows that are common in both

table A and table B

• Difference of tables A and B
– Referred to as A minus B

– Set of all rows that are in table A but that are not in
table B

Joins

• Allows extraction of data from more than one
table

• Join column: column on which two tables are joined

• American National Standards Institute – ANSI

• ANSI SQL/99 features include ANSI compliant
joins. There are several advantages in using this
new syntax, one of which is the separation of the
join condition from the WHERE clause.

http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/

Joins

• Explain Natural Join, Left Outer Join, Inner
join Right Outer Join and Full Outer Join

• Examine these two tables

Employee Table

LastName DepartmentID

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

John NULL

Department Table

DepartmentID DepartmentName

31 Sales

33 Engineering

34 Clerical

35 Marketing

• Natural Join - The resulting joined table contains only
one column for each pair of equally-named columns. The
query compares each row of A with each row of B to find
all pairs of rows which satisfy the join-predicate.

• No more than two tables can be joined using this
method. So, it is best to avoid natural joins when
possible.

DepartmentID Employee.LastName

Department.Department
Name

34 Smith Clerical

33 Jones Engineering

34 Robinson Clerical

33 Steinberg Engineering

31 Rafferty Sales

Employee.LastName
Employee.Departm
entID

Department.Depart
mentName

Department.Depart
mentID

Robinson 34 Clerical 34

Jones 33 Engineering 33

Smith 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

Inner join creates a new result table by combining
column values of two tables The query compares
each row of A with each row of B to find all pairs of
rows which satisfy the join-predicate

• Left outer join - The result of a left outer join (or simply
left join) for table A and B always contains all records of
the "left" table (A), even if the join-condition does not
find any matching record in the "right" table (B).

Employee.LastName
Employee.Departm
entID

Department.Depart
mentName

Department.Depart
mentID

Jones 33 Engineering 33

Rafferty 31 Sales 31

Robinson 34 Clerical 34

Smith 34 Clerical 34

John NULL NULL NULL

Steinberg 33 Engineering 33

• Right outer joins - A right outer join returns all the
values from the right table and matched values from
the left table (NULL in case of no matching join
predicate).

Employee.LastName
Employee.Departm
entID

Department.Depart
mentName

Department.Depart
mentID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

NULL NULL Marketing 35

• Full outer join - A full outer join combines the
results of both left and right outer joins. The joined
table will contain all records from both tables, and fill
in NULLs for missing matches on either side.

Employee.LastName
Employee.Departm
entID

Department.Depart
mentName

Department.Depart
mentID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

John NULL NULL NULL

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

NULL NULL Marketing 35

• SELECT command selects only certain rows

• PROJECT command selects only certain columns

• JOIN command combines data from two or more
tables based on common columns

• Normal set of operations: union, intersection,
and difference

• Product of two tables results from concatenating
every row in the first with every row in the
second

NESTING OF QUERIES

• A complete SELECT query, called a nested query, can be specified
within the WHERE-clause of another query, called the outer query
– Queries can be specified in an alternative form using nesting

• Query: Retrieve the name and address of all employees who work
for the 'Research' department.

SELECT FNAME, LNAME, ADDRESS
 FROM EMPLOYEE JOIN DEPARTMENT ON DNO = DNUMBER
WHERE DNAME=‘Research‘;

Nested query alternative

SELECT FNAME, LNAME, ADDRESS
 FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

 FROM DEPARTMENT
 WHERE DNAME=‘Research’);

Outer Query

Nested Query

• The nested query selects the number of the 'Research'
department

• The outer query select an EMPLOYEE tuple if its DNO
value is in the result of either nested query

• The comparison operator IN compares a value v with a
set (or multi-set) of values V, and evaluates to TRUE if v
is one of the elements in V

• In general, we can have several levels of nested queries
• A reference to an unqualified attribute refers to the

relation declared in the innermost nested query
• In this example, the nested query is not correlated with

the outer query

NESTING OF QUERIES (contd.)

• If a condition in the WHERE-clause of a nested query references an
attribute of a relation declared in the outer query, the two queries are said
to be correlated

– The result of a correlated nested query is different for each tuple (or
combination of tuples) of the relation(s) the outer query

• Query: Retrieve the name of each employee who has a dependent with the
same first name as the employee.

SELECT E.FNAME, E.LNAME
 FROM EMPLOYEE AS E
WHERE E.SSN IN
 (SELECT ESSN
 FROM DEPENDENT
 WHERE ESSN=E.SSN AND E.FNAME=DEPENDENT_NAME);

CORRELATED NESTED QUERIES

Alias

Correlated Nested Query

CORRELATED NESTED QUERIES (contd.)

• In the previous query, the nested query has a different result
in the outer query

• A query written with nested SELECT... FROM... WHERE...
blocks and using the = or IN comparison operators can always
be expressed as a single block query. For example, the
previous query may be written as:

 SELECT E.FNAME, E.LNAME
 FROM EMPLOYEE E JOIN DEPENDENT D
 ON E.SSN=D.ESSN

 WHERE E.FNAME=D.DEPENDENT_NAME;

THE EXISTS FUNCTION

• EXISTS is used to check whether the result of a
correlated nested query is empty (contains no
tuples) or not

– We can formulate the previous query in an
alternative form that uses EXISTS as:

THE EXISTS FUNCTION (contd.)

• Query: Retrieve the name of each employee
who has a dependent with the same first
name as the employee.

• SELECT FNAME, LNAME
 FROM EMPLOYEE
WHERE EXISTS (SELECT * FROM DEPENDENT
 WHERE SSN=ESSN
 AND FNAME=DEPENDENT_NAME);

THE EXISTS FUNCTION (contd.)

• Query: Retrieve the names of employees who have no
dependents:

SELECT FNAME, LNAME
 FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
 FROM DEPENDENT
 WHERE SSN=ESSN);

• The correlated nested query retrieves all DEPENDENT tuples
related to an EMPLOYEE tuple. If none exist, the EMPLOYEE
tuple is selected

– EXISTS is necessary for the expressive power of SQL

NULLS IN SQL QUERIES

• SQL allows queries that check if a value is NULL (missing or
undefined or not applicable)

• SQL uses IS or IS NOT to compare NULLs because it considers
each NULL value distinct from other NULL values, so equality
comparison is not appropriate.

• Query: Retrieve the names of all employees who do not have
supervisors:
 SELECT FNAME, LNAME

 FROM EMPLOYEE
WHERE SUPERVISOR_ID IS NULL;

– Note: If a join condition is specified, tuples with NULL values for
the join attributes are not included in the result

SUBSTRING COMPARISON

• The LIKE comparison operator is used to
compare partial strings

• Two reserved characters are used: '%' (or '*' in
some implementations) replaces an arbitrary
number of characters, and '_' replaces a single
arbitrary character

SUBSTRING COMPARISON (contd.)

• Query: Retrieve all employees whose address
is in Houston, Texas. Here, the value of the
ADDRESS attribute must contain the substring
'Houston,TX‘ in it.

 SELECT FNAME, LNAME
 FROM EMPLOYEE
 WHERE ADDRESS LIKE '%Houston,TX%'

SUBSTRING COMPARISON (contd.)

• Query: Retrieve all employees who were born during the
1950s.
– Here, '5' must be the 8th character of the string (according to

our format for date), so the BDATE value is '_______5_', with
each underscore as a place holder for a single arbitrary
character.

 SELECT FNAME, LNAME
 FROM EMPLOYEE
WHERE BDATE LIKE '_______5_’

• The LIKE operator allows us to get around the fact that each
value is considered atomic and indivisible
– Hence, in SQL, character string attribute values are not atomic

ARITHMETIC OPERATIONS

• The standard arithmetic operators '+', '-'. '*', and '/' (for
addition, subtraction, multiplication, and division,
respectively) can be applied to numeric values in an SQL
query result

• Query: Show the effect of giving all employees who work on
the 'ProductX' project a 10% raise.

 SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE
 JOIN WORKS_ON ON SSN=ESSN
 JOIN PROJECT ON PNO=PNUMBER
WHERE PNAME='ProductX’;

AGGREGATE FUNCTIONS

• Include COUNT, SUM, MAX, MIN, and AVG
• Query: Find the maximum salary, the minimum

salary, and the average salary among all
employees:
 SELECT MAX(SALARY),

 MIN(SALARY),
 AVG(SALARY)

 FROM EMPLOYEE;

• Some SQL implementations may not allow more
than one function in the SELECT-clause

AGGREGATE FUNCTIONS (contd.)

• Query: Find the maximum salary, the
minimum salary, and the average salary
among employees who work for the 'Research'
department:
 SELECT MAX(SALARY),

 MIN(SALARY),
 AVG(SALARY)
 FROM EMPLOYEE JOIN DEPARTMENT
 ON DNO=DNUMBER
 WHERE DNAME='Research‘;

AGGREGATE FUNCTIONS (contd.)

• Queries: (1) Retrieve the total number of employees in the
company, and (2) the number of employees in the 'Research'
department.

(1): SELECT COUNT (*)
 FROM EMPLOYEE;

(2): SELECT COUNT (*)
 FROM EMPLOYEE JOIN DEPARTMENT
 ON DNO=DNUMBER
 WHERE DNAME='Research’;

GROUPING

• In many cases, we want to apply the aggregate
functions to subgroups of tuples in a relation

• Each subgroup of tuples consists of the set of
tuples that have the same value for the
grouping attribute(s)

• The function is applied to each subgroup
independently

• SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in
the SELECT-clause

GROUPING (contd.)

• Query: For each department, retrieve the department number,
the number of employees in the department, and their
average salary.
 SELECT DNO, COUNT (*), AVG (SALARY)

 FROM EMPLOYEE
 GROUP BY DNO;

– In this query the EMPLOYEE tuples are divided into groups-

• Each group having the same value for the grouping attribute DNO

– The COUNT and AVG functions are applied to each such group
of tuples separately

– The SELECT-clause includes only the grouping attribute and the
functions to be applied on each group of tuples

– A join condition can be used in conjunction with grouping

GROUPING (contd.)

• Query: For each project, retrieve the project number, project
name, and the number of employees who work on that
project.

 SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT JOIN WORKS_ON

 ON PNUMBER=PNO
GROUP BY PNUMBER, PNAME;

– In this case, the grouping and functions are applied after the
joining of the two relations

THE HAVING-CLAUSE

• Sometimes we want to retrieve the values of
these functions for only those groups that
satisfy certain conditions

• The HAVING-clause is used for specifying a
selection condition on groups (rather than on
individual tuples)

THE HAVING-CLAUSE (contd.)

• Query: For each project on which more than
two employees work, retrieve the project
number, project name, and the number of
employees who work on that project.
 SELECT PNUMBER, PNAME,
 COUNT(*)
 FROM PROJECT JOIN WORKS_ON
 ON PNUMBER=PNO
 GROUP BY PNUMBER, PNAME
 HAVING COUNT (*) > 2;

Summary of SQL Queries

• A query in SQL can consist of up to six clauses, but
only the first two, SELECT and FROM, are
mandatory. The clauses are specified in the
following order:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

Summary of SQL Queries (contd.)

• The SELECT-clause lists the attributes or functions to be
retrieved

• The FROM-clause specifies all relations (or aliases) needed in
the query but not those needed in nested queries

• The WHERE-clause specifies the conditions for selection and
join of tuples from the relations specified in the FROM-clause

• GROUP BY specifies grouping attributes

• HAVING specifies a condition for selection of groups

• ORDER BY specifies an order for displaying the result of a
query

– A query is evaluated by first applying the WHERE-clause,
then GROUP BY and HAVING, and finally the SELECT-clause

References

• http://en.wikipedia.org/wiki/Relational_algebra

• http://en.wikipedia.org/wiki/Join_(SQL)

• http://www.orafaq.com/wiki/Natural_join

http://en.wikipedia.org/wiki/Relational_algebra
http://en.wikipedia.org/wiki/Join_(SQL)
http://www.orafaq.com/wiki/Natural_join

